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REDUCTION OF THREE-DIMENSIONAL DYNAMICAL ELASTICITY THEORY PROBLEMS 
WITH ARBITRARILY LOCATED PLANE SLITS TO INTEGRAL EQUATIONS* 

V.V. MYKHAS'KIV and M.V. KHAI 

By generalizing a method described earlier /l/ for reducing three-dimensional 
dynamical problems of elasticity theory for a body with a slit to integral 
equations, integral equations are obtained for an infinite body with 
arbitrarily located plane slits. The interaction of disc-shaped slits 
located in one plane is investigated when normal external forces that vary 
sinusoidally with time (steady vibrations) are given on their surfaces. 

Problems of the reduction of dynamical three-dimensional elasticity 
theory problems to integral equations for an infinite body weakened by a 
plane slit were examined in /l, 2/. The solution of the initial problem 
is obtained in /l/ by applying a Laplace integral transform in time to 
the appropriate equations and constructing the solution in the form of 
Helmholtz potentials with densities characterizing the opening of the slit 
during deformation of the body. The problem under consideration is solved 
in /2/ by using the fundamental Stokes solution /3/ with subsequent 
construction of the solution in the form of an analogue of the elastic 
potential of a double layer. 

1. We consider an ealstic infinite body weakened by plane arbitrarily located slits whose 
opposite surfaces S,,+ and S,-(n = 1,2...., N) are subjected to selfequilibrated external forces 
varying with time t. We consider the initial conditions of the problem to be zero. 

We select a basic Cartesian coordinate system 0x1z1r5 with origin Oat an arbitrary point 
of the body and local coordinate systems O,,X~,,I~X~ (n = I,%..., h') in such a way that the 
domain S, which the n-th slit occupies would be contained in the coordinate plane ~,,,O,,T~~. while 
the values zg, = &O (Fig.11 would correspond to thesurfaces S,,*.Let z denote the point with 
coordinates (z1r zp. r9). 

*Prikl.Matem.Mekhan.,49,6,943-950,1985 
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To reduce the initial problem to integral equations we use the 
surfaces of the slit are displaced realtive to each other under the 
If pj,(f.r) denotes functions that characterize the displacement of 
n-th slit surface along the coordinate axes O-zh, then the stress 
coordinate system is 

where the components 

_. 
determined by the relationships 

fact that the opposite 
action of external loads. 
opposite points of the 
Ut~lht in the n-th local 

0th (f, In) = &- ,-l oh(p, .Qw(p~)dp (I, i= I,& 3) 

08~ of the stress in the Laplace transform can be written as follows /l/z 

Here 2, is the point with coordinates (I~,,. x2,,> ra,) in the n-th coordinate system, p is 
the Laplace transform parameter, where Rep> 0, cl1 c2 are the longitudinal and transverse wave 
propagation velocities, G is the shear modulus, and v is Poisson's ratio, The asterisk denotes 
that the Laplace transform of the appropriate functions in t is considered. 

Since there are N plane arbitrarily located slits in the body under consideration, the 

stresses at any point of the body equai the sum of the stresses due to the opening of all the 

slits during body deformation. 

t 

$5 551 

I 

Let Ijkn. rnjkn. njk,, denote the direction cosines 
of the axes %r,, in the coordinate system 

Ok%r?h%* which are given as follows: 

Fig.1 

Then the stress due to displacement of the 

surfaces of the k-th slit are determined at the 

side of n-t% slit location by the formulas 

flkn = &kLjskn + &kmjbkn i &kRjakn i- &&bn + 

a&km& + &kn& (j B 1, 2,s) 

lj~kn = ljknhknv qakn = mjknmkkn 
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nfik,, = nj&n%knt $” jShn = ~jkdhkn + hknmjkn 

(1) 
mjkkn = mjknbkn + mkknnjkn, n$L = njk&kw + ndjm 

summlng all the stresses at the location of the n-th slit that are due to the displacement 
of opposite surfaces of the slits, and equating them to the given extsrnal h'h(t,z) forces (NW 
are normal and hT,, Nb, tangential), we obtain a system of 3N integral equations to determine 
the functions fib&Jr). This system takes the following form in Laplace transforms: 

The prime on the summation sign here denotes that the term with number k = n is omitted, 

zkn is the point 2% with coordinates r,b,,. zpkn, zgtn in the k-th local coordinate system 

okzlt~Zkz,k ad Lj*kn are differential operators whose coefficients depend on the elastic 
constants of the material and the geometrical parameters characterizing the location of the 
slits, determined by means of the formulas t6j8 is the Kronecker delta) 
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Applying an inverse Laplace transform to (1.2), we obtain the integral equations in the 
originals to determine the functions fi,,,(f,r). They are obtained from (1.2) if convolution 
theory is used; however, they are of a more awkward structure than (1.2). 

The integral equations of the static problem of elasticity theory fox an infinite body 
with plane arbitrarily located cracks /4/ follow as a special case from (1.2) if the ph*(p,~) 
in (1.2) are considered to be independent of the parameter p and or and oe tend to zero. TO 

obtain the integral equations of the problem from (1.6) in the case of steady vibrations, i.e. 
when the external load has the form N&(t,z)= N h* (zf exp f-ikt), the 01 in Cl.21 must be 
replaced by -ik, where k, = klc, and k is the oscillation frequency. 

2. Consider the problem of the steady vibrations of an infinite body due to N plane slits 
placed in one plane. We consider the surfaces of the slits to be subjected to just the self- 
equilibrated normal external forces (N,, (t, I) = N,* (z) exp (-ikt), NL,(t, rj = N,, (t, z) = 0). The 
problem of determining the functions & that characterize the slit openings reduces to a 
system of N integral equations (the functions &(f,z) and &,(t,r) are zero in the case under 
consideration). Starting from (1.21, this system of equations can be represented in the form 
(k is the oscillation frequency) 

K*:(Q) “‘4~~‘~“;6’“]d~s=~~(x~) 
2,ES,, n=1,2 ,..., mn N, Klnn(tnr~)=9-9ikll~~-tbI- 

(5W - W) I zmn - E I* + ikl (2k12 - kap) I s,, - E I* + 

‘it (2kis - k?) I =m, - E 1’ 
KPmn (I,, E) = 9 - 9ih I I,,,,., - tI--~,‘I~,,-~l*~fk~‘l~,,-~~* 
kj = k/cj 

If the origins of the local coordinate systems are placed, respectively, in the domains 
s, (n = 1, 2, . . ., iv) while the axes Onz,,, and U,,,x,, are parallel then 

sjmn=dmnejmn+=in (i=1,2) 

where d,, is the distance between the origins of the m-th and n-th coordinate systems, ejmn 
are the direction cosines of the vector d,, in the m-th coordinate system. 

To solve i2.11, we convert them tc the form 

&mn(~nr~) arp;-&-E’i ]d$=+$& 
3,ESn, n=i,2 ,..., N 
A_ [i2(1-~,*-8(l-g)_i1,2~)+3(~--~)'1 

8 
exp (ik,li,-- E I) 

K (G,, K1nnh8 -,m-< ,a - 

Ktn, (+,r f) 
exp(ikl2,-Ci) 

3 
-4’ 

I zn - f IS -+- is,-ii f =n 

It can be seen that s(t,. g)= 0. To evaluate K(Y,. f) for values of I,, close to E, we 
can use the expansion 

Construction of the approximate analytic solution of system (2.2) by using expansion (2.3) 
is possible only for low oscillation frequencies and is fraught with serious mathematical 
difficulties. 

3. As an illustration we examine the case of circular disc-shaped slits. We will seek 

the solution of (2.2) in the form 



where a,, is the radius of the II-th disc-shaped slit, and pn(q,) are 
functions to be determined. Using the method from /S/, we convert 
(2.2) for determining the functions u,,(z,,) to the form 
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(3.1) 

unknown twice-differentiable 
the integral equations 

The integrals I,, Jj,,,,, are evaluated by using the change of variables 

& = ztn -t Pcoso, E, = zzn i- p ais o. 

The fact that the integrands vanish for I,,= E is used in the numerical solution of the 
integral Eqs.(3.2). 

Having determined the functions a,,@,,) by means of the appropriate formulas, we find the 
stress distribution in a body with slits. The stress intensity factors in the neighbourhood 
of the slits are determined directly in terms of the functions a,,[+,,). For the problem under 
consideration R,(P,,, t)= K,,(o,,, t)= 0 (Pn is the angtllar coordinate of a point on the slit 
contour in the n-th coordinate system) 

(3.3) 

The dependence X= IK1,]lKt(K, is the static stress intensity coefficient for one slit under 
the effect of a load A's,,* (rn)) on its surface) on the angular coordinate on is shown in Figs. 
2-4 for different values of the vibrations frequency when there is a system of two and three 
disc-shaped cracks of unit radius located in one plane. The diagram of the crack location 
and the measurement of the angle cp ,, are indicated in the upper part of the figures. It is 
assumed that all the slits are loaded by identical normal forces N,(t,r,)= exp(-ikf). The 
functions a,(~~,(Pn) were determined by numerical solution of the system (2.2). Curves 1-4 
correspond to the values k/c, = 0.2, 0.6, 1.0, 1.2. 

The solid lines in Fig.2 correspond to a distance between the centres of two disc-shaped 
slits of 2.5a (a is the slit radius). Tne dashed lines are for the case when this distance 
is 3a. 

The dependences are shown in Fig.3 by solid lines for theleft slit and by dash-dot lines 
for the central slit. 

The curves in Fig.4 correspond to the case of three cracks whose centresare at the 
vertices of an equilateral triangle with side 2.5a. 

It follows from the graphs and formulas (3.3) that the stress intensity coefficients R,, 
at separate times exceed the analogous values determined within the framework of a static 
formulation of the problem under the same external forces. It follows from the graphs that 
the most probable rupture direction of the body with slits under consideration subjected to 
such external loads is on the line connecting the centres of the cracks. 

As the oscillation frequency increases, the quantity ~R,,I first increases, and then 
decreases on reaching certain values of k. This value depends on the number of cracks and 
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their location in the plane. 

Fig.2 Fig.3 
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